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Abstract

The ever increasing demand of electricity leads to the advancement of Distributed Generation (DG).
Almost the DG sources are renewable in nature. One of the major complications with high penetration of
DG sources is islanding. The islanding may damage the clients and their equipment. As per the IEEE 1547
DG interconnection standards, the islanding will be identified in a period of two seconds and the DG must
be turned off. In this paper an advanced islanding detection process stand on deep learning technique
with Continuous Wavelet Transforms (CWT) and Convolution Neural Networks (CNN) is implemented.
This approach basically transformes the time series information into scalogram images, later the images
are used to train and to test the islanding and non islanding events. The outcomes are correlated with the
Artificial Neural Networks (ANN) and Fuzzy logic methods. The comparison shows that the proposed
deep learning approach efficiently detects the islanding and non islanding events.

1. Introduction

The high integration of DG systems makes the power system network further complex. One of the major
complications as a result of such DG assimilation is islanding. It is a situation where DG feeds the
regional loads after disconnecting from utility grid [1]. It can be intentional or unintentional. The
intentional islanding arises with the maintenance of utility. The unintentional islanding may cause due to
utility grid failure or uncertainties in the power network [2]. It not only damages the customer appliances
and personal but also makes the grid cumbersome [3]. Considerable islanding detection approaches are
recommended by the researchers. They are briefly described here.

The passive methods encounter the situation by regularly auditing the passive parameters at the point of
common coupling (PCC) and comparing it with the predefined threshold value [4]. The passive
parameters are voltage, current, frequency, impedance, phase angle etc. If the parameter exceeds the
specified value, the method affirms the islanding [5]. However, they have been suffering from massive
non detection zone (NDZ) and complexity in fixing threshold values [6—7]. To overcome these demerits,
active methods are suggested. In active methods, a low frequency harmonic signal is continuously
injected and the parameters at PCC are monitored [8]. In grid connected affair the injected signal will not
affect the monitored parameters, but in the islanding case it leads to the discrepancy in the observed
guidelines. The perticuler discrepancies have been used to find the islanding [9-10]. These
recommendations have no NDZ, but they are degrading the quality of power [11]. To eliminate the
drawbacks of active methods, hybrid methods are proposed. They are the aggregate of active and
passive approaches [12]. When the passive method suspects the islanding case, the active approach
confirms it [13]. These methods have no NDZ and effect power quality less compared to active methods
[14]. The remote islanding approach find the islanding by collecting data from utility and DG [15]. Various
signal processing approaches have been proposed by the researchers which reduce the NDZ and
enhances the performance of the passive methods by extracting the hidden features from the passive
parameters [16—18]. Artificial intelligence learning models classify the islanding and non islanding events
without threshold settings efficiently [19]. They do not have NDZ but large data is required for training the
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models [20]. It is compulsary to produce an accurate islanding detection technique due to advancements
in smart grid technology and the complexity of the power system network in the future.

This paper presents a new IDM based on deep learning. This method uses CWT and CNN. First, the time
series data obtained at PCC is transformed toward the scalogram illustrations with CWT which contain
the data of various islanding and non islanding events. Later the scalogram images will be used to train
the proposed CNN model. This is the second attempt of applying image processing techniques for the
classification of the islanding cases. The remaining part of the paper is organized as per the following
aspects. Segment 2 describes the practise of transforming time series input toward scalogram
illustrations. Segment 3 describes the test system and data set preparation. In Section 4 the designing
and training of CNN is presented. The results and discussions are illustrated in Section 5. Section 6
presents the conclusion.

2. Time Series Data To Scalogram Image Conversion

This section presents the operation of transforming time series signal towards the scalogram
appearances. The signal data of (1) is used to prepare the basic scalogram image [21]. It is one second
duration composed of two different frequencies 10 Hz and 200 Hz near ampiltudes 15 and 25
respectively. The amplitudes and frequencies are randomly selected for illustrating the explanation. This
approach uses the wavelet transform of a signal.

f(t) = 15sin(2mr x 10 x ) + 25sin(2m x 200 x ©)
1
The wavelet transform of any signal f{f)can be specified as
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In wavelet transforms, the time frequency energy density of a signal is a scalogram. In simple words, a
scalogram is a observable impersonation of wavelet transform, to what end x, y and z axis produce the
time, frequency and magnitude in color gradient respectively [22]. The scalogram of time series results
represented in Eq. (1) is depicted in Fig. 1. It is obtained by applying the CWT with Morse wavelets. From
Fig. 1 it has two frequencies 10 Hz and 200 Hz and two amplitudes 15 and 25 respectively. In this manner
any time series data can be converted into scalogram images. It is generally known that any supervised
learning requires, data set for training of the network and testing. In this paper, the data set is prepared
with scalogram images of different time series events. The next section describes the test system and
data set preparation for the training of CNN in detail.
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3. Test System And Data Set Preparation

Large training information is needed for testing of any supervised learning methods. For problems related
to image classifications, standard data sets are available. No such standard data sets are available for
islanding detection methods. Hence, a standard test system is appropriate for developing the sufficient
data set. A 100 KW grid integrated PV source shown in Fig. 2 is considered to create such a data set. This
model has been adopted in such a way to satisfy the proposed work. The simulations are borned in the
MATLAB/Simulink plotform. At t = 0.4s, by opening the Circuit Breaker (CB) the islanding event is created.
The phase angle between positive sequence component of voltage and current at PCC is acquired for 6
cycles at 1000 samples per second. A PC with an i5 processor, 8 GB RAM, Windows 10 operating system
is used to get these simulations. For producing the image data set different islanding and non islanding
events are validated and their results are recorded as time series plots. CWT is applied to each time series
data, for the generation of scalogram images. The scalogram of phase angle between positive sequence
component of voltage and current at PCC for grid integrated and disconnected operations is shown in
Fig. 3. It is clearly observed against the scalogram illustrations, there is a good variation among the
islanding and non islanding images. The image classification technique is applied to these images for
the detection of events.

Most of the passive approaches are failed to detect the islanding cases when there a zero or small power
variation among the DG and the load in the islanding situation. This situation is taken into account and
different islanding capsules at nearly worst power mismatches are studied and included in the data set.
The data set also includes several islanding cases and non islanding cases such as switching of loads,
capacitor banks, short circuit faults and motor switching events. A total of 300 islanding and non
islanding are generated for data set creation. Which include 150 islanding and 150 non islanding events.
All events are listed in Table. Il.

4. Methodology And Cnn Design

This segment presents the methodology, architecture and training perticulers of CNN. Figure 4 represents
the steps in the proposed islanding detection process. The phase angle between positive sequence
component of voltage and current is acquired at PCC in time series form. This knowledge is transformed
into scalogram pictures.

The scalogram pictures are given as input to the already ecperienced CNN for classification of events. For
any supervised learning methods, the feature extraction is crucial for workout and examination. The
accuracy of the approach depends on these features. In deep learning the CNN naturally extracts these
features from the input pictures. It has multiple layers, most of the layers are used for feature extraction
and only the concluding minority layers are used for analysis. The general structure of CNN is depicted in
Fig. 5. and various slabs of CNN are shortly described here [23-24].

4.1 Convolution layer
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In deep learning the convolution is a mathematical operation on two functions. Among the two functions,
one function is an image in the form of pixels at the point on the picture and the other function is the
kernel. Both are characterized as a cluster of numbers. The multiplication of these two arrays accord the
outcome. The filter is now moved to another position on the image which is decided through the stride
duration. The convolution is continued as far as the total picture has covered. The output of these
computations is an activation map. Unlike the artificial neural networks where all input neurons are
connected to all the output neurons, CNN has sparse connections, which means only the input neurons
have only a few connections with the next layer neurons. The convolution activity is represented by the

% operator. Output f{x)is characterized when the input I(x)is convoluted with the kernel K(x)as (3)

fix) = (I* K)(x)
3

If takes only integer attitudes, the discretized convolution can be defined as (4), which assumes the one
dimensional convolution

fix) = D, Ia). K(x - a)
a

4

The two dimensional convolution with input I(a, b)and filter K(m, n)is illustrated as (5)

x) = 2 zf(m, n). Kla— m,b—- n)

m

5

By commutative law filter is flipped and Eq. (5) is corresponding to (6)

Ax) = 2 zl(a—m,b—n).K(m,n)

6

Neural networks appliance the cross-correlation operation, it is same as the convolution operation without
flipping the filter, the Eq. (6) changes to (7). Figure 6 shows the convolution operation in detail

x) = 2 zl(a+m,b+ n). K(m, n)

m n

7

4.2 Rectified Liner Unit (ReLu) Layer
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The activation function at the yeild of the convolution lamination is linear naturally. The activations are
commonly happen through the ReLu unit, for getting the nonlinear transformation. There are different
types of activation functions; few among the familiar functions are tanh, sigmoid and Rectified Linear
Unit (ReLu). In this CNN architecture, ReLu activation function is used at the output of previous layers. It
can be represented as Fig. 7

Here, is the input to the neuron. It gives the output as zero if the input is negative and it gives the same
output if the input is a positive value. This layer simplifies the calculations and accelerates the designing,
and it advices to escape the fading gradient problems.

4.3 Pooling Layer

The pooling sheet lower the resolution of the extractions. This layer produces the extractions strong
counter to distortion and noise. Here are four type of pooling, they are max pooling, average pooling, L2
normalization and sum pooling. In these classifications, the input is seperated into non overlapping two
dimensional zones. For max pooling the maximum value of zone values is considered as output. For
average pooling the average of zone values is considered as output and for sum pooling the sum of all
values in the zone is considered. The proposed approach uses the max pooling layer.

4.4 Softmax Layer

Softmax layer provides the probabilities of all classes for n dimensional input real numbers vector. These
probabilities are used for classification. Mathematically it can be represented as (8)
e?i

X1= n Z.
2j=16 J

8

All the determined contingencies are in the dimention of zero and one. The importance of this function is
it can add the entire probabilities up to one.

4.5 Fully connected layer

These are the output layers of the CNN. This layer produces the output classification. Eevery neuron in a
fully connected layer has a connection with all neurons in the last layers. All the features received from
the previous layers are weighted together to produce the specific classification output in this layer. The
combination of these layers varies for different applications.

4.6 Design of CNN for islanding detection approach

In this paper, the CNN is constructed for the classification of different islanding and non islanding events.
Several aspects are taken into account while constructing the CNN. The seusequent steps are initially
supported. During the training process, all the hyperparameters are uninterupted initially. This will help in
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identifying the number of layers required for good efficiency. Once the statistics of slabs are identified, the
variation of hyperparameters is identified for optimal values and they are fixed while designing CNN. It is
initially started with a single layer. Every layer of CNN implements three operations such as convolution,
ReLu activation and max pool operation. Once the CNN is designed and excecuted successfully for a
single layer, the other layer is added and the same operations are repeated until it gets high accuracy. The
response for the number of layers on accuracy found that eight layers architecture has good accuracy
compared to five and seven layers. Hence eight layers architecture is fixed for the CNN design for
classification of islanding and other events. Once it is fixed, the next step is the investigation of the size
of filters. It is found that 3x3 kernel has good output compared to 5x5 and 11x11 kernels. The variation
of learning rate and momentum with stochastic gradient descent with momentum method is verified. The
learning rate of 0.001 accord good outputs in terms of accuracy and loss. The CNN design parameters
and data set information is listed in Tables.l and Table.ll respectively. The complete generic details of the
CNN architecture are presented in Table.lll.

Table.l: CNN design parameters

Training parameters Design Value

Optimizer Stocastic gradient decent with momentum
Momentum 0.2

Learning rate 0.001

Maximum epochs 15

Mini batch size 10

Loss function Cross entrophy

Weight initialization Random

Convolution layers 5

Kernals 3*3, 5*5, 11*11
Drop out 0.5

Stride 2

RelLu

5
Max pooling layers 5
3

Fully connected layer

5. Results And Discussion
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The constructed structure is experienced with 75% of data and tested with 25% of data. The 25% of data
is completely unseen by the designed network. The data set contains the islanding events and various
non islanding events. The non islanding events includes load switching, capacitor switching, feeder
switching, fault switching for ON/OFF cases. In all these cases the time series data is transformed into
scalogram pictures. The voltage varions for islanding and non islanding events are reflected as colour
gradients in the scalogram images. The few testing scalograms are depicted from Fig. 9 to Fig. 13. Total
of 65 (25 islanding + 40 non islanding) cases are tested. Out of all the testing cases only 3 cases are
wrongly predicted. Tha accuracy and loss plots training and validation are depicted in Fig. 14 for 50
epochs.

Table.ll: Different scalograms simulated for data set preparation

Events Number of cases
Islanding 110
Near zero power loading 40
Large and medium loading 70
Non islanding 148
Capacitor switching (ON) 10
Capacitor switching (OFF) 10
Induction motor switching (ON) 10
Induction motor switching (OFF) 10
Load switching (ON) 10
Load switching (OFF) 10
Various types of fault switching 8
Grid connected (Out of islanding area) 80

Table lll: Customized CNN model generic details
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Total params: 47,891

softmax

Trainable params: 46,905

Non-trainable params: 986

Layer name Type Kernel Output Parameters
Size
Input-1 Input Layer - 256 x256 x 3 0
conv2d-1 convolution + ReLU 5x5 256 x 256 x64 321
batch_norm-1 Batch normalization - 256 x 256 x64 256
max_pooling2d-1 MaxPooling 2x2 128,128, 64 0
conv2d-2 convolution + ReLU 5x5 ]%g X 128 x 9930
batch_norm-2 Batch normalization - 128 x128 x 128 512
max_pooling2d-2 MaxPooling 2x2 64 x64 x128 0
conv2d-3 convolution + ReLU 5x5 64 x64 x 256 36234
batch_norm-3 Batch normalization - 64 x64 x256 1024
max_pooling2d-3 MaxPooling 2x2 32 x 32 x256 0
glob_ave_pooIZd- Global Average pooling - 256 0
Dropout-1 Dropout 256 0
Dense-1 Fully connected layer + 2 524

6. Conclusion

This paper presents a novel islanding detection method with with CWT and CNN. The time series data of
phase angle between PSV and PSC obtained from simulink are transformed into scalogram images. The
data set is prepared with 258 events of islanding and non islanding cases. 75% of data set has been used
for training the CNN and remaining 25% (65 Cases) is used for testing. Out of tested 25 islanding and 40
non islanding cases only three non islanding cases is wrongly predicted. This method has an accuracy
95.4%. It has been found that the deep learning based CNN can detect the islanding classifications
effectively compared to machine learning approaches.
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Scalogram image of equation (1)
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Test system for implementation of the proposed method
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Familiar design of CNN

Figure 6
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Convolution operation in CNN

Figure 7

RelLu activation function

Figure 8

Different pooling operations with 2x2 filter and stride 2

Figure 9

Islanding case for 100% of load

Figure 10

Islanding case for 80% of load

Figure 11

Islanding case for 50% of load
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Non islanding case of capacitor switching

Figure 13

Non islanding case of induction motor switching

Figure 14

Accuracy and loss plots for training and validation
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